Abstract

Dynamic fault tree (DFT) is a powerful modeling approach for reliability analysis of complex system with dynamic failure behaviors. In reality, the tree structure may be highly coupled either by shared basic events or by the high-level dynamic gates. Currently, the application of sequential binary decision diagram (SBDD)-based method for quantitative analysis of such highly coupled DFTs is mainly limited to DFTs whose dynamic gates locate in the bottom of the tree. Moreover, there is no efficient way dealing with the dependencies among different nodes of a SBDD 1-path. This paper makes an improvement to the SBDD-based approach. A generation procedure is proposed to directly construct the binary decision diagram (BDD) model for a DFT with arbitrary tree structure. During the construction, the sequential-dependent information of the tree is derived as several BDD nodes, each indicates a binary-sequential event representing the sequence of two occurred basic events. A topological sorting is applied on each 1-path of the resultant BDD to obtain its contained disjoint cut sequences. Based on this, both qualitative and quantitative analysis can be performed on the DFT with no limitations on tree structure, and its minimal cut sequence set (CSS) is obtained as disjoint. Examples are provided for verification and comparison, and the results illustrate the merits of the proposed approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call