The effect of tunneling on the transport properties of quantum Hall double layers in the regime of the excitonic condensate at a total filling factor one is studied in counterflow experiments. If the tunnel current I is smaller than a critical I{C}, tunneling is large and is effectively shorting the two layers. For I>I{C} tunneling becomes negligible. Surprisingly, the transition between the two tunneling regimes has only a minor impact on the features of the filling-factor one state as observed in magnetotransport, but at currents exceeding I{C} the resistance along the layers increases rapidly.