Abstract
Using Coulomb drag as a probe, we explore the excitonic phase transition in quantum Hall bilayers at nu(T) = 1 as a function of Zeeman energy E(Z). The critical layer separation (d/l)(c) for exciton condensation initially increases rapidly with E(Z), but then reaches a maximum and begins a gentle decline. At high E(Z), where both the excitonic phase at small d/l and the compressible phase at large d/l are fully spin polarized, we find that the width of the transition, as a function of d/l, is much larger than at small E(Z) and persists in the limit of zero temperature. We discuss these results in the context of two models in which the system contains a mixture of the two fluids.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.