Abstract

We present and solve a model for the vortex configuration of a disordered quantum Hall bilayer in the limit of strong and smooth disorder. We argue that there is a characteristic disorder strength below which vortices will be rare and above which they proliferate. We predict that this can be observed tuning the electron density in a given sample. The ground state in the strong-disorder regime can be understood as an emulsion of vortex-antivortex crystals. Its signatures include a suppression of the spatial decay of counterflow currents. We find an increase of at least an order of magnitude in the length scale for this decay compared to a clean system. This provides a possible explanation of the apparent absence of leakage of counterflow currents through interlayer tunneling, even in experiments performed deep in the coherent phase where enhanced interlayer tunneling is observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.