Luminescent metal-organic frameworks exhibit great potential as materials for nanophotonic applications because of their programmable properties and tunable structures. In particular, luminescent guests (LG) can be hosted by metal-organic frameworks due to their porosity and guest confinement capacity, forming LG@MOF composite systems. However, such guest-host systems are mainly produced as loose powders, preventing their widespread use in practical devices and technological applications that require implementation of a stable continuum solid. In this regard, using monolithic MOF hosts might be a workable option to solve this challenge. Herein, we reported the facile synthesis and fabrication of novel prototypical sol-gel monolithic systems, designated as LG@monoMOF. Red (rhodamine B), blue (7-methoxycoumarin), and yellow (fluorescein) emitting dyes were encapsulated in a robust UiO-66 monolithic host, resulting in the red, blue, and yellow light-emitting luminescent monoliths. The mechanical and photophysical characterization of the three LG@monoMOF systems was systematically carried out in order to unravel the role of guest-host interactions in the mechanical and optical response of the bespoke LG@monoMOF composites.
Read full abstract