Red mud (RM) disposal has been highly apprehensive due to its environmental impact. The aluminum industry produces large amounts of red mud waste annually, and turning it into a value-added product is a key component of sustainable development. This study combines RM with an N-doped porous carbon (biomass precursor) as an effective electrocatalyst for oxygen evolution and hydrogen evolution reactions (OER and HER). One significant obstacle to anion-exchange membrane (AEM) electrolyzer applications is the development of electrocatalysts that do not require noble metals and are both efficient and effective at HER and OER. The synthesized iron-supported (RM-derived) N-doped porous carbon (RMNPC) exhibits excellent catalytic activities with 276 and 191 mV overpotentials at 10 mA cm−2 for OER and HER, respectively. A two-electrode cell system is designed with an RMNPC/NF electrode as anode and cathode, and it necessitates just 1.82 V to realize 10 mA cm−2 and shows outstanding durability. This study presents a low-cost but effective electrocatalyst for water splitting for renewable hydrogen production, achieving the goal of RM recycling and highlighting the potential of porous carbon electrocatalysts.
Read full abstract