Abstract
The research article focuses on the development of aluminum alloy 6061 sustainable composites with the utilization of industrial waste through the use of the stir casting process. Recycling industrial waste is essential for reducing environmental impact. Thus, the red mud waste came from the aluminum production process, which was considered for producing sustainable metal matrix composites (MMCs). Also, tungsten carbide (WC) microparticles have been used to develop hybrid aluminum composite materials. The concentrations of red mud and tungsten carbide were 2 wt%, 4 wt%, and 6 wt%, respectively, and were used to achieve the desired strength performance of aluminum metal matrix composites. The elemental and bonding analyses of hybrid composites were analyzed using X-ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR) analysis. Mechanical characterizations of aluminum hybrid sustainable composites were also investigated, including tensile, compression, and microhardness testing. The results show that increasing reinforcement by up to 4 wt% increases the mechanical strength of aluminum alloy composites. The tensile, compression, and microhardness of metal matrix composites are increased by 25.24 %, 40.2 %, and 20.6 %, respectively, as compared to the aluminum alloy 6061 alloy. The surface morphology of metal matrix composites was analyzed by utilizing Field emission scanning electron microscopy. The proposed sustainable aluminum composites have the potential to develop structural and automotive components due to their higher strength-to-weight ratio.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.