We systematically analyze the impact of dilatonic dynamics on Skyrme spheres, crystals, and branes. The effects of the dilatonic model parameters, encompassing different underlying near-conformal dynamics, on the macroscopic properties of skyrmions such as their mass and radius are discussed. For spheres and crystals we identify special values of the ratio of the decay constants for which the second order differential equations reduce to a solvable first order system. Additionally, in the case of the crystals, the dilaton presence spatially separates the baryon and isospin charge distributions. For branes, we show how the dilaton smooths out their configurations. Our results are expected to have wide implications from the study of near-conformal dynamics stemming from QCD-like theories to phenomenological investigations of nuclear matter in extreme regimes. Published by the American Physical Society 2024
Read full abstract