Abstract

Nondissipative transport of strangeness is studied in a chiral hadronic plasma with three flavors. In the phase in which chiral symmetry is preserved, strangeness transport is found to be driven by both an external magnetic field and fluid vorticity. As for the constitutive relations of the baryon and electromagnetic currents, they exhibit vortical terms proportional to the strangeness chemical potential. In the superfluid phase, transverse nondissipative diffusion of the baryon, electromagnetic, and strangeness charges is found, which survives in the limit of vanishing chiral imbalance and mixes in a fashion similar to standard dissipative diffusion in quark-gluon plasma.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.