It is shown that the phenomenological description of the baryon magnetic moments in the quark model carries over to the Poincaré covariant extension of the model. This applies to all the three common forms of relativistic kinematics with structureless constituent currents, which are covariant under the corresponding kinematic subgroups. In instant and front form kinematics the calculated magnetic moments depend strongly on the constituent masses, while in point form kinematics the magnetic moments are fairly insensitive to both the quark masses and the wave function model. The baryon charge radii and magnetic moments are determined in the different forms of kinematics for the light-flavor, strange and charm hyperons. The wave function model is determined by a fit to the electromagnetic form factor of the proton.
Read full abstract