LetC(X,E) andC(Y,F) denote the spaces of continuous functions on the Tihonov spacesX andY, taking values in the Banach spacesE andF, respectively. A linear mapH:C(X,E)→C(Y,F) isseparating iff(x)g(x)=0 for allx inX impliesHf(y)Hg(y)=0 for ally inY. Some automatic continuity properties and Banach-Stone type theorems (i.e., asserting that isometries must be of a certain form) for separating mapsH between spaces of real- and complex-valued functions have already been developed. The extension of such results to spaces of vector-valued functions is the general subject of this paper. We prove in Theorem 4.1, for example, for compactX andY, that a linear isometryH betweenC(X,E) andC(Y,F) is a “Banach-Stone” map if and only ifH is “biseparating (i.e,H andH −1 are separating). The Banach-Stone theorems of Jerison and Lau for vector-valued functions are then deduced in Corollaries 4.3 and 4.4 for the cases whenE andF or their topological duals, respectively, are strictly convex.
Read full abstract