Abstract

LetC(X,E) andC(Y,F) denote the spaces of continuous functions on the Tihonov spacesX andY, taking values in the Banach spacesE andF, respectively. A linear mapH:C(X,E)→C(Y,F) isseparating iff(x)g(x)=0 for allx inX impliesHf(y)Hg(y)=0 for ally inY. Some automatic continuity properties and Banach-Stone type theorems (i.e., asserting that isometries must be of a certain form) for separating mapsH between spaces of real- and complex-valued functions have already been developed. The extension of such results to spaces of vector-valued functions is the general subject of this paper. We prove in Theorem 4.1, for example, for compactX andY, that a linear isometryH betweenC(X,E) andC(Y,F) is a “Banach-Stone” map if and only ifH is “biseparating (i.e,H andH −1 are separating). The Banach-Stone theorems of Jerison and Lau for vector-valued functions are then deduced in Corollaries 4.3 and 4.4 for the cases whenE andF or their topological duals, respectively, are strictly convex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call