In this paper, we first investigate the finite-frequency model order reduction for linear systems based on low-rank Gramian approximations. An efficient algorithm for computing low-rank approximations of the finite-frequency and frequency-dependent Gramians based on Laguerre functions is proposed. The approach constructs the low-rank decomposition factors of the finite-frequency Gramians or frequency-dependent Gramians through a recursive formula of Laguerre functions expansion coefficient vectors and then combines the low-rank square root method and frequency-dependent balanced truncation method to obtain the reduced-order models. In this process, it avoids dealing with the matrix-valued functions and solving the related (generalized) Lyapunov matrix equations directly, making them computationally efficient. Furthermore, the above method is successfully extended to bilinear systems, and a corresponding efficient computation method for low-rank approximations of the finite-frequency Gramians of bilinear systems is derived. Finally, some numerical simulations are provided to illustrate the effectiveness of our proposed algorithms.
Read full abstract