Abstract
This paper presents an integrated system frequency response (SFR) modelling method for wind-PV-thermal power systems (WPTPSs) by combining both physical model-based and data-driven modelling methods. The SFR physical model is built and simplified by the balanced truncation (BT) method. Based on the physical model, an improved radial basis function neural networks (RBFNNs) is then employed to establish an off-line SFR model using source data. Following the transfer learning principle, the transferred data from the source data set is determined by the maximum mean discrepancy (MMD) criterion. The RBFNN-based SFR model is then fine-tuned using both the transferred source data and target data. Finally, the fine-tuned RBFNNs is applied to investigate real-time SFR of WPTPSs. Simulation results confirm the effectiveness of the proposed SFR modelling strategy with an illustrative WPTPS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.