Abstract

Abstract In this paper, we focus on the topic of model order reduction (MOR) for coupled systems. At first, an approximation via Laguerre polynomials expansions to controllability and observability gramians for such systems are presented, which provides a low-rank decomposition form whose factors are constructed from a recurrence formula instead of Lyapunov equations. Then, in combination of balanced truncation and dominant subspace projection method, a series of MOR algorithms are proposed that preserve the coupled structures. What’s more, some main properties of reduced-order models, such as stability preservation, are well discussed. Finally, three numerical simulations are provided to illustrate the effectiveness of our algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.