Abstract

This paper proposes a data-driven model reduction approach on the basis of noisy data with a known noise model. Firstly, the concept of data reduction is introduced. In particular, we show that the set of reduced-order models obtained by applying a Petrov-Galerkin projection to all systems explaining the data characterized in a large-dimensional quadratic matrix inequality (QMI) can again be characterized in a lower-dimensional QMI. Next, we develop a data-driven generalized balanced truncation method that relies on two steps. First, we provide necessary and sufficient conditions such that systems explaining the data have common generalized Gramians. Second, these common generalized Gramians are used to construct matrices that allow to characterize a class of reduced-order models via generalized balanced truncation in terms of a lower-dimensional QMI by applying the data reduction concept. Additionally, we present alternative procedures to compute a priori and a posteriori upper bounds with respect to the true system generating the data. Finally, the proposed techniques are illustrated by means of application to an example of a system of a cart with a double-pendulum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.