Abstract
The worst-case robust adaptive beamforming problem for generalrank signal model is considered. This is a nonconvex problem, and an approximate version of it (by introducing a matrix decomposition on the presumed covariance matrix of the desired signal) has been studied in the literature. Herein the original robust adaptive beamforming problem is tackled. Resorting to the strong duality of a linear conic program, the robust beamforming problem is reformulated into a quadratic matrix inequality (QMI) problem. There is no general method for solving a QMI problem in the literature. Here- in, employing a linear matrix inequality (LMI) relaxation technique, the QMI problem is turned into a convex semidefinite programming problem. Due to the fact that there often is a positive gap between the QMI problem and its LMI relaxation, a deterministic approximate algorithm is proposed to solve the robust adaptive beamforming in the QMI form. Last but not the least, a sufficient optimality condition for the existence of an optimal solution for the QMI problem is derived. To validate our theoretical results, simulation examples are presented, which also demonstrate the improved performance of the new robust beamformer in terms of the output signal-to-interference- plus-noise ratio.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.