Abstract: The Enormous progressions in the field of automobiles have led their car engines to have enriched brake power in vehicles. The braking system’s efficiency should be at par with the engine to decelerate the car from a given speed within a less braking distance. The disc rotor and brake pads design and material while counting other impacting factors contribute to braking efficiency. The disc rotor will be exposed to large stresses which result in surface cracking, overheating of brake fluid, seals and other components. Many factors are affecting it as coefficient of friction between brake pad and disk rotor surface, thermal conductivity of pad material. Hence to reduce thermal stresses we can choose right pad material. In this project, thermal analysis for vented disc brake rotor of Mahindra Bolero’s done, for providing an efficient material for disc brake rotor and brake pads with 0 to 12 % of steel powder as filler materials are used which can dissipate heat generated during braking at faster rate and also being structurally safe Keywords: Braking system, Disc Brake Rotor, Thermal, Structural Analysis, CATIA V5, ANSYS WORKBENCH, Pad Material properties