Abstract
Abstract: The Enormous progressions in the field of automobiles have led their car engines to have enriched brake power in vehicles. The braking system’s efficiency should be at par with the engine to decelerate the car from a given speed within a less braking distance. The disc rotor and brake pads design and material while counting other impacting factors contribute to braking efficiency. The disc rotor will be exposed to large stresses which result in surface cracking, overheating of brake fluid, seals and other components. Many factors are affecting it as coefficient of friction between brake pad and disk rotor surface, thermal conductivity of pad material. Hence to reduce thermal stresses we can choose right pad material. In this project, thermal analysis for vented disc brake rotor of Mahindra Bolero’s done, for providing an efficient material for disc brake rotor and brake pads with 0 to 12 % of steel powder as filler materials are used which can dissipate heat generated during braking at faster rate and also being structurally safe Keywords: Braking system, Disc Brake Rotor, Thermal, Structural Analysis, CATIA V5, ANSYS WORKBENCH, Pad Material properties
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Research in Applied Science and Engineering Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.