In wireless rechargeable sensor networks, most researchers address energy scarcity by introducing one or multiple ground mobile vehicles to recharge energy-hungry sensor nodes. The charging efficiency is limited by the moving speed of ground chargers and rough environments, especially in large-scale or challenging scenarios. To address the limitations, researchers consider replacing ground mobile chargers with lightweight unmanned aerial vehicles to support large-scale scenarios because of the unmanned aerial vehicle moving at a higher speed without geographical limitation. Moreover, multiple automatic landing wireless charging PADs are deployed to recharge unmanned aerial vehicles automatically. In this work, we investigate the problem of introducing the minimal number of PADs in unmanned aerial vehicle–based wireless rechargeable sensor networks. We propose a novel PAD deployment scheme named clustering-with-double-constraints and disks-shift-combining that can adapt to arbitrary locations of the base station, arbitrary geographic distributions of sensor nodes, and arbitrary sizes of network areas. In the proposed scheme, we first obtain an initial PAD deployment solution by clustering nodes in geographic locations. Then, we propose a center shift combining algorithm to optimize this solution by shifting the location of PADs and attempting to merge the adjacent PADs. The simulation results show that compared to existing algorithms, our scheme can charge the network with fewer PADs.