This article represents the synthesis and characterizations of Au NPs immobilized and carboxymethyl lignin (CML) modified Fe3O4 nanoparticles (Fe3O4@CML/Au NPs) following a bio-inspired protocol without the participation of any toxic and harmful reductant or stabilizers. Following various physicochemical methodologies, such as FT-IR, FE-SEM, TEM, EDX, XRD, VSM, and ICP-OES, the textural characteristics and different structural aspects were evaluated. The Fe3O4@CML/Au NPs nanocomposite was subsequently explored towards the catalytic reduction of diverse aromatic nitro functions using green conditions. An excellent yield were achieved within very short reaction time. Nine recycling runs of the nanocatalyst were completed without a discernible loss of catalytic activity, thanks to its easy magnetic recovery. The DPPH assay was carried out to examine the antioxidant effectiveness. The Fe3O4@CML/Au NPs nanocomposite inhibited half of the DPPH in a 250 μg/mL solution. To measure the anti-human melanoma efficacy of Fe3O4@CML/Au NPs nanocomposite, MTT assay was applied on HT144, MUM2C, IPC-298 and SKMEL24 cell lines. Fe3O4@CML/Au NPs nanocomposite had high anti-human melanoma efficacy on above tumor cells. The best finding of anti-human melanoma properties of Fe3O4@CML/Au NPs nanocomposite was seen in the case of the SKMEL24 cell line. The IC50 of Fe3O4@CML/Au NPs nanocomposite was 137, 145, 185, and 125 μg/mL against HT144, MUM2C, IPC-298 and SKMEL24 cells, respectively. This research exhibited remarkable anti-human melanoma and antioxidant efficacies of Fe3O4@CML/Au NPs nanocomposite in the in vitro condition.