In the present work, magnesium (Mg) doped SnO2 nanocrystalline thin films were synthesized by simple chemical bath deposition technique. The as-deposited films were annealed at 600 °C for 5 h in ambient atmosphere in order to improve crystallinity and structural perfection. The influence of Mg doping on structural, optical, and morphology of thin films was studied by X-ray diffraction (XRD), Raman spectra, UV–Vis Spectra, photoluminescence, and atomic force micrograph images. The XRD measurements showed that films had a tetragonal rutile type structure with P42/mnm symmetry and the results were good in agreement with the standard JCPDS data (card no: 41-1445). The surface roughness has been found to decrease with the increase of the dopant concentration as investigated by atomic force microscopy. The optical band gap energy of pure SnO2 has been found to be in the range of 3.63 eV and it is shifted to 3.42 eV for 10 wt% Mg doping. In the Raman spectrum, two active mode (A2u and Eu) were observed for Mg–SnO2 thin films. The photocatalytic activities of the films were evaluated by degradation of methylene blue rhodamine B in an aqueous solution under ultraviolet light irradiation. The photocatalytic activity of Mg (10 wt%) doped SnO2 film was much higher than that of the pure SnO2. The samples were further characterized by photoluminescence spectra analysis.
Read full abstract