Objective. This study aimed to evaluate the improvement and neurological function changes of patients with ischemic stroke in the posterior circulation before and after interventional therapy using magnetic resonance imaging (MRI) under genetic algorithm and compressed sensing algorithm. Methods. Thirty-six patients with posterior circulation ischemia who visited the interventional cerebrovascular disease area were included in this study. The treatment effect was observed through abnormal signal changes in the lesion area on each sequence of MRI images before and after treatment. The National Institutes of Health Stroke Scale (NIHSS) was used for the evaluation of the changes in neurological function. Results. The real data experiment results suggested that the peak signal-to-noise ratio (PSNR) = 39.33 and structure similarity (SSIM) = 0.96 in the algorithm reconstructed image, which showed no significant difference with the simulation experiment results of PSNR = 35.19 and SSIM = 0.96 ( P < 0.05 ). In addition, the stenosis rate after interventional treatment (13.89%) was substantially lower than that before treatment (91.67%) ( P < 0.05 ). Cerebral blood flow (CBF) of the bilateral occipital lobes and cerebellum after six months of treatment was higher than that before treatment ( P < 0.05 ), and the incidence of postoperative restenosis was 11.11% (4/36). Conclusion. The combination of genetic algorithm and compressed sensing algorithm had a good effect on MRI image processing. The posterior circulation ischemia interventional stent implantation can effectively improve the stenosis of the vertebral artery and vertebral basilar artery as well as the cerebral tissue perfusion in the ischemic area, which improved the clinical symptoms substantially and reduced the probability of restenosis.