We study the intersection lattice of a hyperplane arrangement recently introduced by Hetyei who showed that the number of regions of the arrangement is a median Genocchi number. Using a different method, we refine Hetyei's result by providing a combinatorial interpretation of the coefficients of the characteristic polynomial of the intersection lattice of this arrangement. The Genocchi numbers count a class of permutations known as Dumont permutations and the median Genocchi numbers count the derangements in this class. We show that the signless coefficients of the characteristic polynomial count Dumont-like permutations with a given number of cycles. This enables us to derive formulas for the generating function of the characteristic polynomial, which reduce to known formulas for the generating functions of the Genocchi numbers and the median Genocchi numbers. As a byproduct of our work, we obtain new models for the Genocchi and median Genocchi numbers.Mathematics Subject Classifications: 52C35 (Primary), 05A05, 05A15, 05B35, 06A07, 11B68 (Secondary)