Abstract
We study the intersection lattice of a hyperplane arrangement recently introduced by Hetyei who showed that the number of regions of the arrangement is a median Genocchi number. Using a different method, we refine Hetyei's result by providing a combinatorial interpretation of the coefficients of the characteristic polynomial of the intersection lattice of this arrangement. The Genocchi numbers count a class of permutations known as Dumont permutations and the median Genocchi numbers count the derangements in this class. We show that the signless coefficients of the characteristic polynomial count Dumont-like permutations with a given number of cycles. This enables us to derive formulas for the generating function of the characteristic polynomial, which reduce to known formulas for the generating functions of the Genocchi numbers and the median Genocchi numbers. As a byproduct of our work, we obtain new models for the Genocchi and median Genocchi numbers.Mathematics Subject Classifications: 52C35 (Primary), 05A05, 05A15, 05B35, 06A07, 11B68 (Secondary)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.