Unlike popular multiband antenna array radiation based on either electric or magnetic surface currents, the use of mutually interleaved and tightly coupled electric and magnetic currents results in an aperture-reuse space-efficient multiband radiating surface for highly integrated antenna-frontend architecture and spatial power combining design scenarios. In this work, slot and dipole modes corresponding to magnetic and electric currents are effectively interleaved and excited in a surface to develop a space-efficient dual-wideband aperture-shared radiating surface. In this case, due to an effective reuse of the antenna aperture over both frequency bands, a high aperture-reuse efficiency is achieved. First, we devise a planar magneto-electric (ME)-dipole-alike antenna and analyze it in both the frequency and time domain. The antenna is then studied by the characteristic mode theory and the findings are validated using full-wave simulations. The developed planar ME-dipole-alike antenna is used to realize a dual-wideband radiating surface in which electric and magnetic currents are mutually coupled and interlaced, which is excited by properly oriented and distributed sources on the antenna's surface. Eventually, a highly isolated dual-wideband prototype was developed and fabricated using a cost-effective multi-layer Printed Circuit Board (PCB) process that operates in the Ku-band with both impedance and gain bandwidth of approximately 42% and in the Ka-band with respective impedance and gain bandwidth of 29% and 16.32%.
Read full abstract