The Industrial Internet of Things (IIoT) has the potential to improve the production and business processes by enabling the extraction of valuable information from industrial processes. The mining industry, however, is rather traditional and somewhat slow to change due to infrastructural limitations in communication, data management, storage, and exchange of information. Most research efforts so far on applying IIoT in the mining industry focus on specific concerns such as ventilation monitoring, accident analysis, fleet and personnel management, tailing dam monitoring, and pre-alarm system while an overall IIoT architecture suitable for the general conditions in the mining industry is still missing. This article analyzes the current state of Information Technology in the mining sector and identifies a major challenge of vertical fragmentation due to the technological variety of various systems and devices offered by different vendors, preventing interoperability, data distribution, and the exchange of information securely between devices and systems. Based on guidelines and practices from the major IIoT standards, a high-level IIoT architecture suitable for the mining industry is then synthesized and presented, addressing the identified challenges and enabling smart mines by automation, interoperable systems, data distribution, and real-time visibility of the mining status. Remote controlling, data processing, and interoperability techniques of the architecture evolve all stages of mining from prospecting to reclamation. The adoption of such IIoT architecture in the mining industry offers safer mine site for workers, predictable mining operations, interoperable environment for both traditional and modern systems and devices, automation to reduce human intervention, and enables underground surveillance by converging operational technology (OT) and information technology (IT). Significant open research challenges and directions are also studied and identified in this paper, such as mobility management, scalability, virtualization at the IIoT edge, and digital twins.