Recovery of metal value, especially from low-grade ores and overburden minerals using acidophilic bacteria through the process of bioleaching is an environmentally benign and commercially scalable biotechnology. In recent years, while the “OMICS” landscape has been witnessing extensive application of computational tools to understand and interpret global biological sequence data, a dedicated bioinformatic server for analysis of bacterial information in the context of its bioleaching ability is not available. We have developed an on-line Bacterial Bioleaching Protein Finder (BBProF) System, which rapidly identifies novel proteins involved in a bacterial bioleaching process and also performs phylogenetic analysis of 16S rRNA genes. BBProF uses the features of Asynchronous Java Script and XML (AJAX) to provide an efficient and fast user experience with minimal requirement of network bandwidth. In the input module the server accepts any bacterial or archaeal complete genome sequence in RAW format and provides a list of proteins involved in the microbial leaching process. BBProF web server is integrated with the European Bioinformatics Institute (EBI) web services such as BLAST for homology search and InterProScan for functional characterization of output protein sequences. Studying evolutionary relationship of bacterial strains of interest using Muscle and ClustalW2 phylogeny web services from EBI is another key feature of our server, where 16S rRNA gene sequences are considered as input through a JQUERY interface along with the sequences present in the BBProF database library. Complete genome sequences of 24 bioleaching microorganism characterized by genomic and physiological study in the laboratory and their respective 16S rRNA gene sequences were stored in the database of the BBProF library. To our knowledge BBProF is the first integrated bioinformatic web server that demonstrates its utility in identifying potential bioleaching bacteria. We hope that the server facilitate ongoing comparative genomic studies on of bioleaching microorganisms and also assist in identification and design of novel microbial consortia that are optimally efficient bioleaching agents.
Read full abstract