Abstract

Crude oils can be major contaminants of the marine ecosystem and microorganisms play a significant role in the degradation of its main constituents. To increase our understanding of the microbial hydrocarbon degradation process in the marine ecosystem, we collected crude oil from an active seep area located in the Santa Barbara Channel (SBC) and generated a total of about 52 Gb of raw metagenomic sequence data. The assembled data comprised ~500 Mb, representing ~1.1 million genes derived primarily from chemolithoautotrophic bacteria. Members of Oceanospirillales, a bacterial order belonging to the Deltaproteobacteria, recruited less than 2% of the assembled genes within the SBC metagenome. In contrast, the microbial community associated with the oil plume that developed in the aftermath of the Deepwater Horizon (DWH) blowout in 2010, was dominated by Oceanospirillales, which comprised more than 60% of the metagenomic data generated from the DWH oil plume. This suggests that Oceanospirillales might play a less significant role in the microbially mediated hydrocarbon conversion within the SBC seep oil compared to the DWH plume oil. We hypothesize that this difference results from the SBC oil seep being mostly anaerobic, while the DWH oil plume is aerobic. Within the Archaea, the phylum Euryarchaeota, recruited more than 95% of the assembled archaeal sequences from the SBC oil seep metagenome, with more than 50% of the sequences assigned to members of the orders Methanomicrobiales and Methanosarcinales. These orders contain organisms capable of anaerobic methanogenesis and methane oxidation (AOM) and we hypothesize that these orders – and their metabolic capabilities – may be fundamental to the ecology of the SBC oil seep.

Highlights

  • Oil-exposed marine microbial consortia are known to be capable of degrading hydrocarbons [1]

  • The microbial community associated with the oil plume that developed in the aftermath of the Deepwater Environmental DNA (eDNA)- environmental DNA (Horizon) (DWH) blowout in 2010, was dominated by Oceanospirillales, which comprised more than 60% of the metagenomic data generated from the DWH oil plume. This suggests that Oceanospirillales might play a less significant role in the microbially mediated hydrocarbon conversion within the Santa Barbara Channel (SBC) seep oil compared to the DWH plume oil

  • We identified a total of 204 reads annotated as dsr within the SBC seep oil metagenome, suggesting that Anaerobic oxidation of methane (AOM) via reverse methanogenesis – a process mediated primarily by consortia of archaeal methane oxidizers and bacterial sulfur reducers – may occur during the microbially mediated biofiltration of CH4 in the hydrocarbon rich sediments

Read more

Summary

Introduction

Oil-exposed marine microbial consortia are known to be capable of degrading hydrocarbons [1]. Advances in DNA sequencing technologies and computation provide insights into the metabolic blueprint of microbial cells and microbial communities directly from environmental samples. This has facilitated a better understanding of the genes and metabolic processes that underlie the phenotypes of individual cells and complex communities - without depending on axenic microbial cultures [9,10]. The potential of DNA sequencing to improve our understanding of microbial responses to large oil spills, was recognized immediately by the scientific community following the 4 million barrel DWH spill released into the Gulf of Mexico (GoM), resulting in a number of studies that employed metagenomics and metatranscriptomics to map the communities genetic response so as to eventually develop more sustainable remediation strategies [4,11,12,13,14]. We report on the first metagenome exceeding 50 Gb of raw DNA sequence data from a microbial community associated with natural crude oil seeps of the Santa Barbara Channel (SBC), one of the world’s largest natural hydrocarbon seep regions [16], which can be accessed publicly through IMG/M for further analysis by the scientific community

Classification and features
Metagenome sequencing information
Metagenome sequencing and assembly
Energ y source
IMG Project ID
Metagenome properties
Taxonomic gene diversity
Pfam Clusters
Functional genes related to methane metabolism
Methanog enesis
Findings
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.