BackgroundEthylene is a gaseous plant hormone that acts as a requisite role in many aspects of the plant life cycle, and it is also a regulator of plant responses to abiotic and biotic stresses. In this study, we attempt to provide comprehensive information through analyses of existing data using bioinformatics tools to compare the identified ethylene biosynthesis genes between Arabidopsis (as dicotyledonous) and rice (as monocotyledonous). ResultsThe results exposed that the Arabidopsis proteins of the ethylene biosynthesis pathway had more potential glycosylation sites than rice, and 1-aminocyclopropane-1-carboxylate oxidase proteins were less phosphorylated than 1-aminocyclopropane-1-carboxylate synthase and S-adenosylmethionine proteins. According to the gene expression patterns, S-adenosylmethionine genes were more involved in the rice-ripening stage while in Arabidopsis, ACS2, and 1-aminocyclopropane-1-carboxylate oxidase genes were contributed to seed maturity. Furthermore, the result of miRNA targeting the transcript sequences showed that ath-miR843 and osa-miR1858 play a key role to regulate the post-transcription modification of S-adenosylmethionine genes in Arabidopsis and rice, respectively. The discovered cis- motifs in the promoter site of all the ethylene biosynthesis genes of A. thaliana genes were engaged to light-induced response in the cotyledon and root genes, sulfur-responsive element, dehydration, cell cycle phase-independent activation, and salicylic acid. The ACS4 protein prediction demonstrated strong protein-protein interaction in Arabidopsis, as well as, SAM2, Os04T0578000, Os01T0192900, and Os03T0727600 predicted strong protein-protein interactions in rice. ConclusionIn the current study, the complex between miRNAs with transcript sequences of ethylene biosynthesis genes in A. thaliana and O. sativa were identified, which could be helpful to understand the gene expression regulation after the transcription process. The binding sites of common transcription factors such as MYB, WRKY, and ABRE that control target genes in abiotic and biotic stresses were generally distributed in promoter sites of ethylene biosynthesis genes of A. thaliana. This was the first time to wide explore the ethylene biosynthesis pathway using bioinformatics tools that markedly showed the capability of the in silico study to integrate existing data and knowledge and furnish novel insights into the understanding of underlying ethylene biosynthesis pathway genes that will be helpful for more dissection.