Abstract

Primary cell wall cellulose is synthesized by the cellulose synthase complex (CSC) containing CELLULOSE SYNTHASE1 (CESA1), CESA3 and one of four CESA6-like proteins in Arabidopsis. It has been proposed that the CESA6-like proteins occupy the same position in the CSC, but their underlying selection mechanism remains unclear. We produced a chimeric CESA5 by replacing its N-terminal zinc finger with its CESA6 counterpart to investigate the consequences for its homodimerization, a crucial step in forming higher-order structures during assembly of the CSC. We found that the mutant phenotypes of prc1-1, a cesa6 null mutant, were rescued by the chimeric CESA5, and became comparable to the wild type (WT) and prc1-1 complemented by WT CESA6 in regard to plant growth, cellulose content, cellulose microfibril organization, CSC dynamics and subcellular localization. Bimolecular fluorescence complementation assays were employed to evaluate pairwise interactions between the N-terminal regions of CESA1, CESA3, CESA5, CESA6 and the chimeric CESA5. We verified that the chimeric CESA5 explicitly interacted with all the other CESA partners, comparable to CESA6, whereas interaction between CESA5 with itself was significantly weaker than that of all other CESA pairs. Our findings suggest that the homodimerization of CESA6 through its N-terminal zinc finger is critical in defining its functional properties, and possibly determines its intrinsic roles in facilitating higher-order structures in CSCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.