Despite the complexity of allergic rhinitis (AR) pathogenesis, no FDA-approved drug has been developed to achieve optimal therapeutic effects. The present study explored the efficacy and mechanism of Huangqi (Hedysarum Multijugum Maxim)-Gancao (Glycyrrhizae Radix et Rhizoma or licorice) herb pair in treating AR by network pharmacology and experimental approaches. The bioactive ingredients of Huangqi and Gancao were identified and used to predict the targets of these herbs in AR and generate the pharmacological network. Ovalbumin (OVA)-induced AR mouse model was established to assess the anti-AR effect of the Huangqi decoction (HQD) prepared based on both herbs. We identified 90 active ingredients of the Huangqi-Gancao pair, targeting 69 AR-related genes. Quercetin (QUE) was identified as the hub ingredient of this pair, with 57 targets in AR. The protein-protein interaction (PPI) network analysis and molecular docking revealed IL1B, TNF, STAT1, IL6, PTGS2, RELA, IL2, NFKBIA, IFNG, IL10, IL1A, IRF1, EGFR, and CXCL10 as important targets of QUE in AR treatment. Experimentally, QUE or HQD significantly alleviated the AR-induced histopathological changes, AR symptoms, and IgE level and counteracted AR-induced expression changes of IFNG, IRF1, RELA, and NFKBIA. These effects were promoted by the NF-kB inhibitor helenalin, indicating that HQD and QUE counteracted AR in mice by regulating the IFNG/IRF1 signaling via the NF-κB pathway in AR mice. These findings shed light on the efficacy of the constituents of Huangqi-Gancao pair, their potential targets, and the molecular mechanisms of HQD in treating AR, which could advance the development of tailored therapeutic interventions for this disorder.
Read full abstract