Abstract

Allergic rhinitis (AR) is a systemic allergic disease that has a considerable impact on patients' quality of life. Current treatments include antihistamines and nasal steroids; however, their long-term use often causes undesirable side effects. In this context, traditional Asian medicine (TAM), with its multi-compound, multi-target herbal medicines (medicinal plants), offers a promising alternative. However, the complexity of these multi-compound traits poses challenges in understanding the overall mechanisms and efficacy of herbal medicines. Here, we demonstrate the efficacy and underlying mechanisms of these multi-compound herbal medicines specifically used for AR at a systemic level. We utilized a modified term frequency-inverse document frequency method to select AR-specific herbs and constructed an herb-compound-target network using reliable databases and computational methods, such as the Quantitative Estimate of Drug-likeness for compound filtering, STITCH database for compound-target interaction prediction (with a high confidence score threshold of 0.7), and DisGeNET and CTD databases for disease-gene association analysis. Through this network, we conducted AR-related targets and pathway analyses, as well as clustering analysis based on target-level information of the herbs. Gene ontology enrichment analysis was conducted using a protein-protein interaction network. Our research identified 14 AR-specific herbs and analyzed whether AR-specific herbs are highly related to previously known AR-related genes and pathways. AR-specific herbs were found to target several genes related to inflammation and AR pathogenesis, such as PTGS2, HRH1, and TBXA2R. Pathway analysis revealed that AR-specific herbs were associated with multiple AR-related pathways, including cytokine signaling, immune response, and allergic inflammation. Additionally, clustering analysis based on target similarity identified three distinct subgroups of AR-specific herbs, corroborated by a protein-protein interaction network. Group 1 herbs were associated with the regulation of inflammatory responses to antigenic stimuli, while Group 2 herbs were related to the detection of chemical stimuli involved in the sensory perception of bitter taste. Group 3 herbs were distinctly associated with antigen processing and presentation and NIK/NF-kappa B signaling. This study decodes the principles of TAM herbal configurations for AR using a network pharmacological approach, providing a holistic understanding of drug effects beyond specific pathways.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.