Aqueous batteries are attractive due to their high safety and fast reaction kinetics, but the narrow electrochemical stability window of H2O limits their applications. It is a big challenge to broaden the electrochemical operation window of aqueous electrolytes while retaining fast reaction kinetics. Here, a new organic aqueous mixture electrolyte of manipulatable (3D)molecular microheterogeneity with H2O-rich and H2O-poor domains is demonstrated. H2O-poor domains molecularly surround the reformed microclusters of H2O molecules through interfacial H-bonds, which thus not only inhibit the long-range transfer of H2O but also allow fast and consecutive Li+ transport. This new design enables low-voltage anodes reversibly cycling with aqueous-based electrolytes and high ionic conductivity of 4.5 mS cm-1. LiMn2O4||Li4Ti5O12 full cells demonstrate excellent cycling stability over 1000 cycles under various C rates and a low temperature of -20°C. 1 Ah pouch cell delivers a high energy density of 79.3Wh kg-1 and high Coulombic efficiency of 99.4% at 1 C over 200 cycles. This work provides new insights into the design of electrolytes based on the molecular microheterogeneity for rechargeable batteries.
Read full abstract