In this work, we experimentally investigate the suspension behavior of droplets subjected to standing acoustic waves. We focus on the droplet sizes beyond the Rayleigh limit, i.e., when the droplet size is comparable to the wavelength of the acoustic wave. We show that an acoustic field can disrupt the uniform motion of aqueous droplets in oil and cause them to either suspend or settle, depending on the interplay between acoustic and gravity forces. Remarkably, in contrast to droplets within the Rayleigh limit, the critical acoustic power or minimum pressure amplitude required to suspend droplets beyond the Rayleigh limit is dependent on the droplet size. As the droplet size increases, the critical acoustic power increases significantly. Building upon this understanding, a novel sorting method is proposed based on critical acoustic power.
Read full abstract