Abstract

Akin to optical beam chopping, we demonstrate that formation and routing of aqueous droplets in oil can chop a fluidic sample to permit phase sensitive detection. This hand-operated microfluidic sample chopper (μChopper) greatly reduces the detection limit of molecular absorbance in a 27 μm optical path. With direct dependence on path length, absorbance is fundamentally incompatible with microfluidics. While other microfluidic absorbance approaches use complex additions to fabrication, such as fiber coupling and increased optical paths, this self-regulated μChopper uses opposing droplet generators to passively alternate sample and reference droplets at ~10 Hz each. Each droplet's identity is automatically locked-in to its generator, allowing downstream lock-in analysis to nearly eliminate large signal drift or 1/f noise. With a lock-in time constant of 1.9 s and total interrogated volume of 59 nL (122 droplets), a detection limit of 3.0 × 10(-4) absorbance units or 500 nM bromophenol blue (BPB) (29 fmol) was achieved using only an optical microscope and a standard, single-depth (27 μm) microfluidic device. The system was further applied to nanoliter pH sensing and validated with a spectrophotometer. The μChopper represents a fluidic analog to an optical beam chopper, and the self-regulated sample/reference droplet alternation promotes ease of use.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.