In response to the enormous threat to human survival and development caused by the large number of viruses, it is necessary to strengthen the defense against and elimination of viruses. Metallic materials have been used against viruses for thousands of years due to their broad-spectrum antiviral properties, wide sources and excellent physicochemical properties; in particular, metal nanoparticles have advanced biomedical research. However, researchers in different fields hold dissimilar views on the antiviral mechanisms, which has slowed down the antiviral application of metal nanoparticles. As such, this review begins with an exhaustive compilation of previously published work on the antiviral capacity of metal nanoparticles and other materials. Afterwards, the discussion is centered on the antiviral mechanisms of metal nanoparticles at the biological and physicochemical levels. Emphasis is placed on the fact that the strong reducibility of metal nanoparticles may be the main reason for their efficient inactivation of viruses. We hope that this review will benefit the promotion of metal nanoparticles in the antiviral field and expedite the construction of a barrier between humans and viruses.
Read full abstract