Background. Additive technologies are increasingly making their way from university laboratories and high-tech industries into routine clinical practice and even into our everyday lives. Any enthusiast, having a PC and a 3D printer at his or her disposal, can create any physical object — from children’s toys to works of art. The presence on the market of a wide range of software pro-ducts, equipment, and consumables along with the data from mo-dern diagnostic methods, a high level of training and cooperation between doctors and engineers provide practical medicine with unprecedented opportunities. We are finally able to fully customize our treatment and diagnostic procedures: to perform precise preoperative planning; to draw up a detailed plan of the operation; to rehearse the intervention on full-scale anatomical prototypes using a standard tool; to conduct the surgery as quickly and atraumatically as possible; to minimize risks; to ensure the optimal functional result and to manufacture and install customized implants in the most difficult cases. The purpose was to draw the attention of our distinguished colleagues to the aspects of application of additive technologies in modern orthopaedic practice, to introduce them into the history and current state of medical prototyping, as well as to share technological nuances with them. Materials and methods. While writing this article, we incorporated the data of recent publications in specialized domestic and foreign periodicals, several monographs, materials from thematic conferences, the results of informal conversations with colleagues in the operating rooms, at the computer and production site, as well as our own experience (over 200 cases of prototyping). Conclusions. The availability of equipment, software, and consumables allows for the introduction of additive technology into the everyday practice of nearly every modern orthopaedic and trauma clinic.
Read full abstract