Abstract
Background. Additive technologies are increasingly making their way from university laboratories and high-tech industries into routine clinical practice and even into our everyday lives. Any enthusiast, having a PC and a 3D printer at his or her disposal, can create any physical object — from children’s toys to works of art. The presence on the market of a wide range of software pro-ducts, equipment, and consumables along with the data from mo-dern diagnostic methods, a high level of training and cooperation between doctors and engineers provide practical medicine with unprecedented opportunities. We are finally able to fully customize our treatment and diagnostic procedures: to perform precise preoperative planning; to draw up a detailed plan of the operation; to rehearse the intervention on full-scale anatomical prototypes using a standard tool; to conduct the surgery as quickly and atraumatically as possible; to minimize risks; to ensure the optimal functional result and to manufacture and install customized implants in the most difficult cases. The purpose was to draw the attention of our distinguished colleagues to the aspects of application of additive technologies in modern orthopaedic practice, to introduce them into the history and current state of medical prototyping, as well as to share technological nuances with them. Materials and methods. While writing this article, we incorporated the data of recent publications in specialized domestic and foreign periodicals, several monographs, materials from thematic conferences, the results of informal conversations with colleagues in the operating rooms, at the computer and production site, as well as our own experience (over 200 cases of prototyping). Conclusions. The availability of equipment, software, and consumables allows for the introduction of additive technology into the everyday practice of nearly every modern orthopaedic and trauma clinic.
Highlights
Additive technologies are increasingly making their way from university laboratories and high-tech industries into routine clinical practice
The purpose was to draw the attention of our distinguished colleagues to the aspects
we incorporated the data of recent publications
Summary
Цель: представить вниманию коллег практические аспекты и возможности аддитивных технологий в современной ортопедической практике, ознакомить с историей и текущим состоянием медицинского прототипирования, поделиться технологическими тонкостями. Использование просвечивающего электронного микроскопа для научных исследований было начато в конце 1930-х годов. Идея применения трехмерных медицинских изображений, а именно данных компьютерной томографии (КТ), для воссоздания физической модели впервые была предложена в 1979 году. По мере того как в конце 1980-х стали появляться образцы 3D-принтеров и все чаще стали использоваться технологии трехмерной визуализации, всерьез стал рассматриваться вопрос о применении 3D-печати в медицине. SLA стала первой доступной технологией 3D-печати, которая была применена в медицине в 1994 году [3]. Цель работы: на основе литературных данных осветить практические аспекты и возможности аддитивных технологий в современной ортопедической практике, ознакомить с историей и текущим состоянием медицинского прототипирования, поделиться технологическими тонкостями
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.