A new series of mixed ligand complexes of Cd(II) and Mo(V) were successfully synthesized by refluxing the mixture solution of oxytetracycline hydrochloride (OTC.HCl) with an aqueous and alcoholic solution of metal (M = Cd(II) and Mo(V)) salts and an alcoholic solution of salicylaldehyde (Sal). The complexes were characterized by modern analytical and spectral methods such as elemental microanalysis, pH, conductivity, surface tension, viscosity, melting point, and spectral methods such as FT-IR, NMR, electronic absorption, SEM, and mass spectrometry. Conductivity measurements of the complexes revealed their electrolytic nature. The kinetic and thermal stabilities were investigated using thermogravimetric and differential thermal analysis techniques. Thermodynamic and kinetic parameters such as E∗, ΔH∗, ΔS∗, and ΔG∗ were calculated from TG curves using the Coats–Redfern method. Geometry optimization of the proposed structure of the complexes was achieved by running MM2 calculations in a Gaussian-supported CS ChemOffice 3D Pro.12.0 version software. The final optimized geometrical energies for respective Cd-OTC/Sal and Mo-OTC/Sal complexes were found to be 923.1740 and 899.3184 kcal/mol. The electronic absorption spectral study revealed a tetrahedral geometry for the Cd-OTC/Sal complex and octahedral geometry for the Mo-OTC/Sal complex. The antibacterial sensitivity of the complexes was evaluated against three bacterial pathogens such as S. aureus, E. coli, and P. mirabilis using the modified Kirby–Bauer paper disc diffusion method. The antibacterial study revealed significant growth inhibitory action of the complexes.