Abstract

A new series of mixed ligand complexes of Cd(II) and Mo(V) were successfully synthesized by refluxing the mixture solution of oxytetracycline hydrochloride (OTC.HCl) with an aqueous and alcoholic solution of metal (M = Cd(II) and Mo(V)) salts and an alcoholic solution of salicylaldehyde (Sal). The complexes were characterized by modern analytical and spectral methods such as elemental microanalysis, pH, conductivity, surface tension, viscosity, melting point, and spectral methods such as FT-IR, NMR, electronic absorption, SEM, and mass spectrometry. Conductivity measurements of the complexes revealed their electrolytic nature. The kinetic and thermal stabilities were investigated using thermogravimetric and differential thermal analysis techniques. Thermodynamic and kinetic parameters such as E∗, ΔH∗, ΔS∗, and ΔG∗ were calculated from TG curves using the Coats–Redfern method. Geometry optimization of the proposed structure of the complexes was achieved by running MM2 calculations in a Gaussian-supported CS ChemOffice 3D Pro.12.0 version software. The final optimized geometrical energies for respective Cd-OTC/Sal and Mo-OTC/Sal complexes were found to be 923.1740 and 899.3184 kcal/mol. The electronic absorption spectral study revealed a tetrahedral geometry for the Cd-OTC/Sal complex and octahedral geometry for the Mo-OTC/Sal complex. The antibacterial sensitivity of the complexes was evaluated against three bacterial pathogens such as S. aureus, E. coli, and P. mirabilis using the modified Kirby–Bauer paper disc diffusion method. The antibacterial study revealed significant growth inhibitory action of the complexes.

Highlights

  • A new series of mixed ligand complexes of Cd(II) and Mo(V) were successfully synthesized by refluxing the mixture solution of oxytetracycline hydrochloride (OTC.HCl) with an aqueous and alcoholic solution of metal (M Cd(II) and Mo(V)) salts and an alcoholic solution of salicylaldehyde (Sal). e complexes were characterized by modern analytical and spectral methods such as elemental microanalysis, pH, conductivity, surface tension, viscosity, melting point, and spectral methods such as FT-IR, NMR, electronic absorption, SEM, and mass spectrometry

  • Geometry optimization of the proposed structure of the complexes was achieved by running MM2 calculations in a Gaussian-supported CS ChemOffice 3D Pro.12.0 version software. e final optimized geometrical energies for respective CdOTC/Sal and Mo-OTC/Sal complexes were found to be 923.1740 and 899.3184 kcal/mol. e electronic absorption spectral study revealed a tetrahedral geometry for the Cd-OTC/Sal complex and octahedral geometry for the Mo-OTC/Sal complex. e antibacterial sensitivity of the complexes was evaluated against three bacterial pathogens such as S. aureus, E. coli, and P. mirabilis using the modified Kirby–Bauer paper disc diffusion method. e antibacterial study revealed significant growth inhibitory action of the complexes

  • We have focused our research intended to address the antibacterial significance of the metal complexes of the oxytetracyclinesalicylaldehyde mixed ligand

Read more

Summary

Experimental

E metal complexes Cd-OTC/ Sal and Mo-OTC/Sal were prepared by heating the mixture solution of 20 ml oxytetracycline hydrochloride (0.9941 g, 2 mmol) in ethanol with 10 ml aqueous solution of CdCl2.H2O (0.4029 g, 2 mmol) /10 ml alcoholic solution of MoCl5 (0.5469 g, 2 mmol). To this solution, 0.2 ml of salicylaldehyde (2 mmol) was added and refluxed for 8 h. Ammonia solution was added dropwise to maintain a pH of 7 Under these conditions, precipitation of the complexes was formed and filtered, washed with ethanol, and dried under vacuum desiccators over anhydrous CaCl2.

OH 2O NH2
Results and Discussion
Spectroscopic Characterization
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.