Circular antenna arrays (CAAs) find extensive utility in a range of cutting-edge communication applications such as 5G networks, the Internet of Things (IoT), and advanced beamforming technologies. In the realm of antenna design, the side lobes levels (SLL) in the radiation pattern hold significant importance within communication systems. This is primarily due to its role in mitigating signal interference across the entire radiation pattern’s side lobes. In order to suppress the subsidiary lobe, achieve the required primary lobe orientation, and improve directivity, an optimization problem is used in this work. This paper introduces a method aimed at enhancing the radiation pattern of CAA by minimizing its SLL using a Hybrid Sooty Tern Naked Mole-Rat Algorithm (STNMRA). The simulation results show that the hybrid optimization method significantly reduces side lobes while maintaining reasonable directivity compared to the uniform array and other competitive metaheuristics.