In this proposed work, water leakage detection in Polyvinyl chloride (PVC) pipes has been investigated using a ring filter connected to log-periodic feedlines (LPF). The proposed filter has a well-structured ring design to adjust the PVC pipes and operates between 0.3 GHz & 0.7 GHz. Using a signal generator & analyzer, attenuation measurements are obtained to analyze the impact of water leakage. PVC pipes with varying diameters (3 inches, 2 inches, 1.5 inches, & 1 inch) are connected with water stoppers to control the water flow during experiments. The leak is contained within a plastic tub to make measurements easier. Results show a good connection between attenuation & water level for all pipe diameters, supporting the LPF-based ring filter’s effectiveness as a leakage detector. An analogous circuit model is created to evaluate the filter’s performance further. At the same time, the resonant parameters, such as Q-factors & resonant frequencies, are retrieved from S21 magnitude measurements in the operating frequency range. The proposed methodology is shown to be accurate & reliable, offering significant potential for water leakage detection in PVC pipe systems. By accurately detecting water leakage, this technology enables prompt repairs, reducing water loss & associated costs, enhancing water infrastructure, and promoting sustainable water management.
Read full abstract