Neutron diffraction measurements on 6Li/7Li isotopically substituted 10 and 33 mol % *LiTFSA (lithium bis(trifluoromethylsulfonyl)amide)-AN-d3 (acetonitrile-d3) and 10 and 33 mol % *LiTFSA-DMF-d7(N,N-dimethylformamide-d7) solutions have been carried out in order to obtain structural insights on the first solvation shell of Li+ in highly concentrated organic solutions. Structural parameters concerning the local structure around Li+ have been determined from the least squares fitting analysis of the first-order difference function derived from the difference between carefully normalized scattering cross sections observed for 6Li-enriched and natural abundance solutions. In 10 mol % LiTFSA-AN-d3 solution, 3.25 ± 0.04 AN molecules are coordinated to Li+ with a intermolecular Li+···N(AN) distance of 2.051 ± 0.007 Å. It has been revealed that 1.67 ± 0.07 AN molecules and 2.00 ± 0.01 TFSA- are involved in the first solvation shell of Li+ in the 33 mol % LiTFSA-AN solution. The nearest neighbor Li+···NAN and Li+···OTFSA- distances are obtained to be r(Li+···N) = 2.09 ± 0.01 Å and r(Li+···O) = 1.88 ± 0.01 Å, respectively. The first solvation shell of Li+ in the 10 mol % LiTFSA-DMF-d7 solutions contains 3.4 ± 0.1 DMF molecules with an intermolecular Li+···ODMF distance of 1.95 ± 0.02 Å. In highly concentrated 33 mol % LiTFSA-DMF-d7 solutions, there are 1.3 ± 0.2 DMF molecules and 3.2 ± 0.2 TFSA- in the first solvation shell of Li+ with intermolecular distances of r(Li+···ODMF) = 1.90 ± 0.02 Å and r(Li+···OTFSA-) = 2.01 ± 0.01 Å, respectively. The Li+···TFSA- contact ion pair stably exists in highly concentrated 33 mol % LiTFSA-AN and -DMF solutions.