The effect of a high external potassium concentration on the synthesis and deposition of matrix components by chondrocytes in cell culture was determined. There is a twofold increase in the amount of chondroitin 4- and 6-sulfate accumulated by chondrocytes grown in medium containing a high potassium concentration. There is also a comparable increase in the production of other sulfated glycosaminoglycans (GAG) including heparan sulfate and uncharacterized glycoprotein components. The twofold greater accumulation of GAG in the high potassium medium is primarily the result of a decrease in their rate of degradation. In spite of this increased accumulation of GAG, the cells in high potassium fail to elaborate appreciable quantities of visible matrix, although they do retain the typical chondrocytic polygonal morphology. Although most of the products are secreted into the culture medium in the high potassium environment, the cell layer retains the same amount of glycosaminoglycan as the control cultures. The inability of chondrocytes grown in high potassium to elaborate the typical hyaline cartilage matrix is not a consequence of an impairment in collagen synthesis, since there is no difference in the total amount of collagen synthesized by high potassium or control cultures. There is, however, a slight increase in the proportion of collagen that is secreted into the medium by chondrocytes in high potassium. Synthesis of the predominant cartilage matrix molecules is not sufficient in itself to ensure that these molecules will be assembled into a hyaline matrix.
Read full abstract