Let Matn(F) be the algebra of n × n matrices over a field F. For A1,…, Ak ∈ Matn(F), we define the linear transformation $$L\left( {{A_1}, \ldots ,{A_k}} \right):{\rm{Ma}}{{\rm{t}}_n}\left( F \right) \to {\rm{Ma}}{{\rm{t}}_n}\left( F \right)$$ by \(L\left( {{A_1}, \ldots ,{A_k}} \right)\left( {{A_{k + 1}}} \right) = \sum\nolimits_{\sigma \in {\rm{Sy}}{{\rm{m}}_{k + 1}}} {{\mathop{\rm sgn}} \left( \sigma \right){A_{\sigma \left( 1 \right)}}{A_{\sigma \left( 2 \right)}} \ldots {A_{\sigma \left( {k + 1} \right)}}} \). The Amitsur—Levitzki theorem asserts that L(A1,…, Ak) is identically 0 for every A1,…, Ak, as long as k ⩾ 2n − 1. Dixon and Pressman conjectured that if F = ℝ is the field of real numbers and k is an even integer between 2 and 2n − 2, then the kernel of L(A1,…, Ak) is of dimension k for A1,…, Ak ∈ Matn(ℝ) in general position. We prove this conjecture using graph-theoretic techniques.
Read full abstract