Abstract

We consider decompositions of digraphs into edge-disjoint paths and describe their connection with the n-th Weyl algebra of differential operators. This approach gives a graph-theoretic combinatorial view of the normal ordering problem and helps to study skew-symmetric polynomials on certain subspaces of Weyl algebra. For instance, path decompositions can be used to study minimal polynomial identities on Weyl algebra, similarly as Eulerian tours applicable for Amitsur–Levitzki theorem. We introduce the G-Stirling functions which enumerate decompositions by sources (and sinks) of paths.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.