Abstract

The algebra of quantum differential operators on graded algebras was introduced by V. Lunts and A. Rosenberg. D. Jordan, T. McCune and the second author have identified this algebra of quantum differential operators on the polynomial algebra with coefficients in an algebraically closed field of characteristic zero. It contains the first Weyl algebra and the quantum Weyl algebra as its subalgebras. In this paper we classify irreducible weight modules over the algebra of quantum differential operators on the polynomial algebra. Some classes of indecomposable modules are constructed in the case of positive characteristic and q root of unity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.