Abstract
Papadima and Suciu proved an inequality between the ranks of the cohomology groups of the Aomoto complex with finite field coefficients and the twisted cohomology groups, and conjectured that they are actually equal for certain cases associated with the Milnor fiber of the arrangement. Recently, an arrangement (the icosidodecahedral arrangement) with the following two peculiar properties was found: (i) the strict version of Papadima-Suciu's inequality holds, and (ii) the first integral homology of the Milnor fiber has a non-trivial 2-torsion. In this paper, we investigate the relationship between these two properties for double covering spaces. We prove that (i) and (ii) are actually equivalent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.