Abstract

Let [Formula: see text] be a field of characteristic zero and [Formula: see text] the algebra of [Formula: see text] matrices over [Formula: see text]. By the classical Amitsur–Levitzki theorem, it is well known that [Formula: see text] is the smallest degree of a standard polynomial identity of [Formula: see text]. A theorem due to Rowen shows that when the symplectic involution [Formula: see text] is considered, the standard polynomial of degree [Formula: see text] in symmetric variables is an identity of [Formula: see text]. This means that when only certain kinds of matrices are considered in the substitutions, the minimal degree of a standard identity may not remain being the same. In this paper, we present some results about the minimal degree of standard identities in skew or symmetric variables of odd degree of [Formula: see text] in the symplectic graded involution case. Along the way, we also present the minimal total degree of a double Capelli polynomial identity in symmetric variables of [Formula: see text] with transpose involution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.